Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity.

نویسندگان

  • J P Vielle-Calzada
  • J Thomas
  • C Spillane
  • A Coluccio
  • M A Hoeppner
  • U Grossniklaus
چکیده

In higher plants, seed development requires maternal gene activity in the haploid (gametophytic) as well as diploid (sporophytic) tissues of the developing ovule. The Arabidopsis thaliana gene MEDEA (MEA) encodes a SET-domain protein of the Polycomb group that regulates cell proliferation by exerting a gametophytic maternal control during seed development. Seeds derived from female gametocytes (embryo sacs) carrying a mutant mea allele abort and exhibit cell proliferation defects in both the embryo and the endosperm. In this study we show that the mea mutation affects an imprinted gene expressed maternally in cells of the female gametophyte and after fertilization only from maternally inherited MEA alleles. Paternally inherited MEA alleles are transcriptionally silent in both the young embryo and endosperm. Mutations at the decrease in DNA methylation1 (ddm1) locus are able to rescue mea seeds by functionally reactivating paternally inherited MEA alleles during seed development. Rescued seeds are larger than the wild type and exhibit some of the abnormalities found in aborting mea seeds. Our results indicate that the maintenance of the genomic imprint at the mea locus requires zygotic DDM1 activity. Because DDM1 encodes a putative chromatin remodeling factor, chromatin structure is likely to be interrelated with genomic imprinting in Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MEDEA Takes Control of Its Own Imprinting

Genomic imprinting is an essential epigenetic process that controls the size of seeds in flowering plants. In Arabidopsis, DEMETER activates the maternal copy of the imprinted MEDEA Polycomb gene. In this issue of Cell, Gehring et al. (2006) demonstrate that this activation involves DNA demethylation of MEDEA by DEMETER. Remarkably, they also find that silencing of the paternal MEDEA allele is ...

متن کامل

Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting.

Imprinted genes are expressed predominantly from either their paternal or their maternal allele. To date, all imprinted genes identified in plants are expressed in the endosperm. In Arabidopsis thaliana, maternal imprinting has been clearly demonstrated for the Polycomb group gene MEDEA (MEA) and for FWA. Direct repeats upstream of FWA are subject to DNA methylation. However, it is still not cl...

متن کامل

Characterization of an Arabidopsis thaliana DNA hypomethylation mutant

We have recently isolated two Arabidopsis thaliana DNA hypomethylation mutations, identifying the DDM1 locus, that cause a 70% reduction in genomic 5-methylcytosine levels [1]. Here we describe further phenotypic and biochemical characterization of the ddm1 mutants. ddm1/ddm1 homozygotes exhibited altered leaf shape, increased cauline leaf number, and a delay in the onset of flowering when comp...

متن کامل

Plant development:: Medea's maternal instinct

The Arabidopsis MEDEA gene is required in maternal tissues to restrict cell proliferation in embryos. Molecular characterisation indicates that MEDEA encodes a Polycomb-group protein, particularly intriguing as MEDEA's maternal effects may be a consequence of genomic imprinting.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 13 22  شماره 

صفحات  -

تاریخ انتشار 1999